一 正弦定理の応用 (辺と角の大小関係)・

 \triangle ABC において、A < B < C ならば a < b < c である。 また、逆も成り立つ。

(三角形と三角関数)

【証明】

A < B < C と仮定する。

(i) $A < B < C \le 90^{\circ} \text{ obsta}$,

正弦の値は角度が大きいほど大きいので $\sin A < \sin B < \sin C$

(ii) $A < B < 90^{\circ} < C$ のときは, $B < A + B = 180^{\circ} - C < 90^{\circ}$ であるから

 $\sin A < \sin B < \sin(A+B) = \sin C$

したがって、いずれの場合でも $\sin A < \sin B < \sin C$

よって正弦定理から a < b < c

逆に a < b < c と仮定する。

このとき正弦定理から $\sin A < \sin B < \sin C$

(i)' A, B, C のいずれも 90° より大きくないときは、明らかに A < B < C

(ii)' A, B, C のうちの 1 つ (例えば C) が 90° より大きいときは,

 $C = 180^{\circ} - (A+B) > 90^{\circ}$ から $0^{\circ} < A+B < 90^{\circ}$ ゆえに $A < 90^{\circ}$, $B < 90^{\circ}$

よって $\sin A < \sin B$ から A < B また, $B < 90^{\circ} < C$ よって A < B < C

したがって、いずれの場合でも A < B < C

- 正弦定理の応用 (辺と角の大小関係)

 $\triangle ABC$ において, $A \leq B \leq C$ ならば $a \leq b \leq c$ である。 また, 逆も成り立つ。

(三角形と 三角関数)

【証明】

 $A \le B \le C$ と仮定する。

(i)
$$A \leq B \leq C < \frac{\pi}{2}$$
 のときは,

正弦の値は角度が大きいほど大きいので $\sin A \le \sin B \le \sin C$

(ii)
$$A \le B < C = \frac{\pi}{2}$$
 のときは、 $\sin A \le \sin B < \sin C$

(iii)
$$A \leq B < C$$
 で $\frac{\pi}{2} < C < \pi$ のときは, $A + B = \pi - C < \frac{\pi}{2}$ であるから

 $\sin A \le \sin B < \sin(A+B) = \sin C$

したがって、いずれの場合でも $\sin A \le \sin B \le \sin C$

よって正弦定理から $a \le b \le c$

逆に $a \leq b \leq c$ と仮定する。このとき正弦定理から $\sin A \leq \sin B \leq \sin C$ よって

(i)'
$$A,\ B,\ C$$
 のいずれも $\frac{\pi}{2}$ より大きくないときは、明らかに $A \leq B \leq C$

$$(ii)'$$
 A, B, C のうちの 1 つ (例えば C) が $\frac{\pi}{2}$ より大きいときは,

$$C=\pi-(A+B)>rac{\pi}{2}$$
 から $0< A+B<rac{\pi}{2}$ ゆえに $A<rac{\pi}{2},\ B<rac{\pi}{2}$

よって $\sin A \leq \sin B$ から $A \leq B$

また,
$$B < \frac{\pi}{2} < C$$
 よって $A \leq B < C$

したがって、いずれの場合でも $A \leq B \leq C$